在選購聲波成像儀時(shí)應關(guān)注哪些方面呢?以下6項必備特點(diǎn)有助于您作出最終購買(mǎi)決策。
壓縮空氣泄漏、真空系統泄漏、電氣系統局部放電——所有這些代價(jià)高昂的系統問(wèn)題都會(huì )消耗電力,導致公司需要處理不可預見(jiàn)的成本及潛在生產(chǎn)/正常運行時(shí)間問(wèn)題。作為全面的資產(chǎn)管理計劃的組成部分,使用聲波成像儀進(jìn)行超聲成像是檢測這些設備問(wèn)題的一種有效方式。通常,這種簡(jiǎn)單易用的技術(shù)使專(zhuān)業(yè)人士能夠以10倍于傳統方法的速度完成檢測工作。
那么,在選購聲波成像儀時(shí)應關(guān)注哪些方面呢?以下6項必備特點(diǎn)有助于您作出最終購買(mǎi)決策。
有效的頻率范圍
首先需要考慮的特性之一是聲像儀的頻率范圍。您可能認為,您需要盡可能寬的頻率范圍,以盡可能擴大收音頻率的范圍。然而,事實(shí)上,檢測壓縮空氣泄漏的有效頻率范圍介于20至30 kHz之間。這是因為,使用20至30 kHz頻率范圍有助于將壓縮空氣泄漏與工廠(chǎng)的背景噪音區分開(kāi)來(lái)。機械噪音的振幅通常在10 kHz頻率下達到峰值,在60 kHz頻率下降至0,而漏風(fēng)在20至30 kHz之間達到峰值。由于在20-30 khz之間漏風(fēng)噪音和背景噪音之間存在較大差異,因此與更高頻率相比,在該頻率范圍內更易檢測到漏風(fēng)。
在30至60 kHz頻率范圍內,壓縮空氣和機械噪音的振幅均呈現出減小的趨勢,這使得區分它們十分困難。因此,在20至30 kHz范圍內工作更有效。
對于在安全距離內檢測局部放電的用戶(hù),10至30 kHz范圍為較佳。這是因為較高頻率范圍傳播距離較短。為了檢測室外環(huán)境中高壓設備的局部放電,需要把聲波成像儀調至較低頻率、傳播距離更遠的聲音。
麥克風(fēng)數量
為了捕捉更安靜的噪音,越多越好。聲波成像儀通常利用數十個(gè)微機電系統(MEMS)麥克風(fēng)收集和區分聲音。雖然MEMS較小,功耗較低,且十分穩定,但是它們本身產(chǎn)生的噪音會(huì )干擾單個(gè)麥克風(fēng)收錄極安靜聲音的能力。解決方案是增加使用中麥克風(fēng)的數目;僅需將麥克風(fēng)數目翻倍便能將信噪比增加到足以消除3分貝無(wú)用噪音的程度。
例如,一個(gè)麥克風(fēng)產(chǎn)生的自噪音可能足以讓系統無(wú)法收錄產(chǎn)生16.5 kHz信號的壓縮空氣泄漏。
擁有32個(gè)麥克風(fēng)的聲波成像儀可以檢測到那種泄漏,但是由于信噪比仍然太低以至于無(wú)法收錄任何更安靜的聲音。
相比之下,一個(gè)擁有124個(gè)麥克風(fēng)的聲像儀既能收錄頻率為16.5 kHz的泄漏,又能收錄頻率為18.5 kHz的泄漏,使其更易檢測、查明和量化較小的泄漏。
聲音探測距離
給聲波成像儀增加合適數目的麥克風(fēng)也能增加從較遠距離處收錄極安靜噪音的概率。這在檢測高壓系統時(shí)尤其重要,因為這需要在安全距離之外檢測帶電設備。隨著(zhù)聲波成像儀遠離聲源,聲音信號的強度顯著(zhù)下降。解決辦法是增加麥克風(fēng)的數目:麥克風(fēng)數目增至4倍基本能使聲音檢測范圍翻倍。
麥克風(fēng)布局
聲波成像儀上麥克風(fēng)的布局會(huì )影響聲波成像儀確定聲音方向和位置的方式。聲波成像儀從每個(gè)麥克風(fēng)采集數據,測量信號的時(shí)間差和相位差,并計算聲源位置。這些麥克風(fēng)需要被緊緊排列在一起,以確保它們能夠收集到足夠的聲波數據,從而準確確定音源的方向。
麥克風(fēng)性能
就像頻率一樣,一臺聲波成像儀能容納的麥克風(fēng)數量有一個(gè)上限。設置過(guò)多麥克風(fēng)的一個(gè)潛在弊端是每個(gè)麥克風(fēng)都需要處理功率以便將音頻數據信號轉換成圖像——因此,增加太多麥克風(fēng)會(huì )使回報減少。某些制造商通過(guò)降低聲像像素或“聲音”像素的分辨率平衡這一點(diǎn),但是這樣做會(huì )影響聲波成像儀的整體性能。擁有足夠的聲音像素數以便從一定距離處可靠地檢測電暈放電和局部放電并查明其確切來(lái)源,這一點(diǎn)至關(guān)重要。
FLIR Si124擁有124個(gè)麥克風(fēng)和先進(jìn)的處理能力,具有良好的檢測靈敏度、出色的聲像分辨率和較大的檢測范圍。